
Eventless Reactivity from Scratch

Gergely Patai

Budapest University of Technology and Economics, Budapest, Hungary
patai@iit.bme.hu

Abstract. Functional reactive programming is a conceptual extension
to traditional functional programming that promises to make the de-
scription of interactive software easy to express in a declarative way.
However, reactive libraries promoting an applicative style all seem to
suffer from various implementation issues, which prevents programmers
from exploring the design space of functional reactive applications, and
relevant research effort is mostly limited to establishing the foundations
of various libraries.
This paper presents Elerea, a simple reactive library created in order
to fill this hiatus in the Haskell world. The library offers first-class con-
tinuous higher-order signals and the ability to resolve feedback loops
without requiring the programmer to insert explicit delays. The signal
network can be fully dynamic, and stateful signals are created through a
monadic interface that makes their start time explicit. Initial experience
suggests that Elerea manages to fulfil its goal and provides a comfortable
environment for application-level experiments.

1 Introduction

Functional reactive programming (FRP) is a programming paradigm conceived
with the aim of describing various kinds of interactive systems in a clean, declara-
tive manner. As FRP has been proposed for a wide range of application domains,
there are great differences between various systems. The common denominator
is that these systems all try to hide the specifics of temporal behaviour behind
some abstraction and deal with the whole life cycle of a time-varying value (usu-
ally referred to as ‘signal’ or ‘behaviour’ in FRP literature) as one entity instead
of concentrating on separate points, and sometimes they also attempt to collapse
related events to be labelled with a single name. For instance, ‘current window
size’ can be a behaviour, while ‘all key presses received by the main window’ can
be an event using this terminology.

While FRP is a language independent concept, most systems are built on top
of Haskell. There are three important libraries to consider at the moment: Yampa
[5], Grapefruit [13] and Reactive [6]. Yampa is an arrow-based library, which
allows the user to describe the application as a data-flow network built from
signal functions that consume and produce a stream and can optionally maintain
an internal state. Reactive is intended to provide a functionally pure applicative
interface, where signals are first class entities that can be combined just as freely



as ordinary values in any functional program. Grapefruit is conceptually the most
complex system, where signals are used to connect effectful circuits through an
arrow interface, but more complex signals can be derived from simpler ones using
applicative combinators.

Out of the three, so far only Yampa has reached the level of practical useful-
ness, and it has indeed sparked interesting projects like Frag [3] or YampaSynth
[11]. However, this means that there is no applicative style FRP library avail-
able to Haskellers to experiment with, while this style preserves most of the nice
properties of functional programming in general. Therefore, it became a basic
requirement for Elerea to give the user a similar experience and open the way
for people to experiment with applicative reactive design. For simplicity, the li-
brary only deals with continuous signals, and it has no concept of event, hence
its name Elerea – short for ‘eventless reactivity’.

Elerea is mainly an experiment to see where we can get if we start the ex-
ploration from the user end instead of defining a clean core to build on. This
paper introduces Elerea with the help of some examples, guides us through its
internals and explains the thought process leading to the final design.

2 Signal Interface

2.1 Static Networks

An Elerea signal is a time-varying value of any type, and most importantly it is
a first-class citizen. Conceptually, a value of type Signal a (denoted as S a from
now on) can be thought of as a function of type Time → a, which is sampled
at non-decreasing points of time. Time is just a synonym for a suitable floating
point type.

Signals are applicative functors [14]. In practice, this means that ordinary
functions of any arity can be lifted to perform a point-wise application on signals,
i.e. the Applicative instance of S behaves the same way as the corresponding
instance of functions with a given input type (like Time).

For instance, given two signals s1 and s2, we can define their point-wise sum
by lifting (+) to act on them:

s = liftA2 (+) s1 s2

Elerea defines default instances for signals carrying certain numeric types, so
several operations can be lifted automatically. In particular, the alternative def-
inition s = s1 + s2 would also work in this case.

Of course the real power of FRP lies in manipulating stateful signals. The
simplest way to define such a signal is provided by the stateful combinator, which
can be used to define a source without an input:

stateful :: a → (DTime → a → a)→ SM (S a)

DTime is a synonym for Double, and it denotes the time elapsed between consec-
utive sampling points. The return type reveals a vital design decision of Elerea:



stateful signal combinators return values in a monad called SM (SignalMonad),
whose role is to make it clear when the resulting signals start. This has been one
of the central problems of FRP, and various systems settle for different answers.
We will see later what SM looks like inside, but from a user standpoint it is
enough to think of it as the only possible source of stateful signals.

The signal created by stateful x0 f emits x0 when it is first sampled, and every
time it is sampled it modifies its internal state (the next output) by applying f to
the time elapsed since the previous sampling and the previous value. For instance,
we can create a timer signal by simply accumulating the time differences:

makeTimer :: Double → SM (S Double)
makeTimer t0 = stateful t0 (+)
signalWithInternalTimer = do

timer ← makeTimer 0
. . .

The timer signal can be thought of as the identity function, if we consider signals
functions of time.

While these stateful signals are nice, they do not really allow us to build
interesting systems that can react to user input in a stateful way even when used
together with the applicative combinators. There is a more general construct, the
transfer function, which also takes the value of another signal into consideration
when calculating the next state:

transfer :: a → (DTime → t → a → a)→ S t → SM (S a)

The signal constructed by transfer x0 f s has an initial internal state x0, and
every time it is sampled with a time difference dt , its next state is calculated
by applying f to dt , the current value of s, and the previous state. It is slightly
different from stateful in that the first output of this signal is the result of the first
application, i.e. x0 is not observed on the output (except for certain conditions,
as we will see later). In other words, the value of signal s at any given moment
affects the value of the constructed signal at the same moment.

A simple use for the transfer function is defining a generic integral combina-
tor:

integral :: Fractional a ⇒ a → S a → SM (S a)
integral x0 s = transfer x0 (λdt x x0 → x0 + x ∗ realToFrac dt) s

One can easily ignore the time step if the transfer function does not need it. For
instance, a transfer function that remembers the maximum of its input signal
can be defined in the following way:

keepMax :: Ord a ⇒ a → S a → SM (S a)
keepMax x0 s = transfer x0 (const max ) s

Even though transfer can be used for point-wise function application, it is better
to use fmap for that purpose, since it is more efficient and easier to compose.



2.2 Automatic Delays

Integrals can be used to define trig functions from scratch:

trigs :: Fractional t ⇒ SM (S t ,S t)
trigs = mdo

sine ← integral 0 cosine
cosine ← integral 1 (−sine)
return (sine, cosine)

Note the mdo notation, which is an extension of do notation allowing value
recursion [8]. Since SM is an instance of MonadFix , it is possible to define several
signals in terms of each other, just as one can do with ordinary values. This
feature is essential, because such a need seems to come up routinely in practice.

Since transfer is immediate, the above definition looks like it would cause
an infinite loop as soon as we request a sample from either trig signal. In other
systems, this problem is normally solved by inserting a delay element in every
feedback loop. However, Elerea is capable of inserting such delays automatically,
during runtime. There is one limitation, mainly for the sake of efficiency: these
delays can only affect transfer nodes, i.e. loops that are built from solely stateless
combinators are not resolved. Actually, if they were, that would violate the laws
of applicative functors.

It is not possible to tell in advance where exactly these extra delays will be
placed, because this operational detail is deliberately left undefined. If a library
user does not like this uncertainty, they can prevent it by inserting explicit delays
with the following combinator:

delay :: a → S a → SM (S a)

In short, delay takes a value to be output upon the first sampling, and a signal
to delay by one step. As far as the values of the streams are concerned, delay x0

is equivalent to transfer x0 (const const). However, the latter would not prevent
automatic delays, since the evaluator cannot tell from an opaque function that
the current output depends only on past input, therefore delay is a primitive
combinator.

2.3 Embedding and Animating Signals

In order to get to the top-level signal, Elerea provides a conversion function,
which allows the programmer to embed the reactive code in an imperative frame-
work:

createSignal :: SM a → IO a

If we have a signal in our hands, we can sample it using the superstep function,
which expects a signal and a time step, and produces a sample in return:

superstep :: S a → DTime → IO a



It is up to the user of the library to execute superstep in a loop and supply
the time differences. Elerea does not provide any higher level construct for this
purpose, so it can easily interface with basically any imperative framework.

Since we are programming reactive systems, we need a way to provide exter-
nal input to the signal network. The external primitive returns a signal and an
IO action that can be used to feed it.

external :: a → IO (S a,Sink a)

Sink a is just a synonym for a → IO (). Whenever the sink is passed a value,
the corresponding signal will be delivering that value until the next call to the
sink. The user-defined loop is usually the best place to update external signals.

It would be difficult to include a meaningful example using these embedding
functions in the paper. However, the library comes with a fully functional and
richly commented, yet still rather small OpenGL Breakout example in the elerea-
examples package available through cabal-install1, which shows what a real-life
Elerea application might look like.

2.4 Dynamic Networks

Static networks can solve simple problems, but a complex task is often easier to
model with signals whose life cycles are shorter than that of the whole network.
Stateless combinators pose no problem, as their creation time does not affect
their behaviour. In fact, they can be completely lazy just like any ordinary value.
On the other hand, it is essential that we know exactly when a stateful signal
comes to life, e.g. which moment the time signal defined above is measuring
from.

Using a monadic interface can provide an convenient solution to this problem.
Elerea defines a single construct that can be used to construct arbitrary signals
on the fly:

generator :: S Bool → S (SM a)→ S (Maybe a)

A generator takes a stream of booleans and a stream of SMs, and extracts the
latter at every sampling point the former evaluates to true. The resulting signal
has an option type: if the boolean was false, it carries Nothing , otherwise it
carries the value produced by the monad wrapped in Just . The concrete type in
place of the a can be any complex data structure containing one or more signals.

For instance, we can deliver a new timer signal every time a boolean condition
holds (cond :: S Bool); we will use the makeTimer function defined above:

timers :: S (Maybe (S Double))
timers = generator cond (pure (makeTimer 0))

1 Available at http://hackage.haskell.org/package/elerea-examples. If you have
the Haskell Platform installed, just type cabal unpack elerea-examples, and check
the doc directory.



Elerea also provides a simple latch defined in terms of transfer that takes an
initial value and a Maybe stream, and holds on the last input that was wrapped
in Just :

storeJust :: a → S (Maybe a)→ SM (S a)

With its help, we can get rid of the Maybe layer:

timers ′ :: SM (S (S Double))
timers ′ = do

init ← makeTimer 0
storeJust init timers

But this is a higher-order signal, and neither of the combinators mentioned so far
can get to the samples of the inner signal. This is where the sampler primitive
can be used:

sampler :: S (S a)→ S a

A sampler can collapse a higher-order signal by exposing the inner signal deliv-
ered at the given moment. This definition suggests that sampler might be used
as join to define a Monad instance of S. However, it is not clear yet whether this
is a valid assumption. In any case, the current implementation does not support
such a substitution – this was tested by attempting to redefine the Applicative
instance in terms of sampler and fmap.

The use of higher-order signals also uncovers a basic operational detail of
Elerea: a signal is only aged (its internal state updated) if the signal sampled by
superstep depends on its current output. Let us consider the following example:

toggleTimer :: S Bool → SM (S Double)
toggleTimer sel = do

timer1 ← makeTimer 0
timer2 ← makeTimer 10
let selectTimer b = if b then timer1 else timer2

return (sampler (fmap selectTimer sel))

What happens if we sample a toggleTimer applied to some boolean signal? De-
pending on the current value of the sel signal we can observe the current value
of either timer1 or timer2, and when sel is toggled, we can see that the timer
we ignored so far has not advanced.

If this is not the behaviour we want, we have to sample the internal timers at
the same level as the enclosing toggleTimer . The straightforward way to achieve
this is not using higher-order signals at all (#$ stands for inline fmap and ~ is
lifted function application):

toggleTimer ′ :: S Bool → SM (S Double)
toggleTimer ′ sel = do

timer1 ← makeTimer 0



timer2 ← makeTimer 10
let ifte b x1 x2 = if b then x1 else x2

return (ifte #$ sel ~ timer1 ~ timer2)

However, if we still want to model our network with higher-order signals, we
can use the keepAlive construct, whose type is S a → S t → S a, and it simply
ensures that both signals passed to it are aged while only delivering the value of
the first. So the last line of toggleTimer could be modified the following way:

return $ sampler (fmap selectTimer sel)
‘keepAlive‘ timer1 ‘keepAlive‘ timer2

It is useful to keep in mind that automatic delays work seamlessly even in
dynamic networks as long as all cyclic dependencies have at least one stateful
node somewhere in the loop.

2.5 Signal Collections

We do not need any additional construct to be able to model a dynamic collection
of entities as a dynamically changing collection of signals. As a simple example,
we will define a list of three timers started at different points, each of which is
removed after reaching a preset limit. We use delay to be able to initialise the
collection (timers0) and describe its next state (timers ′) in terms of the current
one (timers). Both timers and timers ′ have type S [S Double ], i.e. they are
signals carrying a collection of timers.

timerList :: SM (S [Double ])
timerList = mdo

timers0 ← mapM makeTimer [40, 20, 70]
timers ← delay timers0 timers ′

let ts = sampler (sequenceA #$ timers)
timers ′ = map snd ◦ filter ((<80) ◦ fst) #$ (zip #$ ts ~ timers)

return ts

Note that we take advantage of the fact that lists are instances of Traversable,
which provides the sequenceA operation that essentially turns the structure
inside-out by swapping the traversable and the applicative layer:

sequenceA :: (Traversable t ,Applicative f )⇒ t (f a)→ f (t a)

In this particular context, the traversable layer is the list and the applicative layer
is the signal, so the specialised type of sequenceA is [S Double ] → S [Double ].
Under the hood, this function simply traverses the data structure and replaces
every constructor with its lifted version, thereby moving it behind the applicative
abstraction.

In order to construct timers ′, we simply pair up timers with their current
values and keep only those that have not yet reached the limit.



The timerList signal can be easily tested by repeated sampling:

timerTest :: IO [[Double ]]
timerTest = do

tl ← createSignal timerList
replicateM 20 $ superstep tl 3

3 Implementation

3.1 Data Structures

Each signal constructor corresponds to a node in the network, therefore the
dataflow network has essentially the same structure as the call graph on the
user end. The nodes are mutable variables, and their value changes whenever the
signal in question is aged. The actual type behind each signal is the following:

newtype S a = S (IORef (SignalTrans a))

SignalTrans is a wrapper that keeps track of the sampling phases during each
superstep. Its definition is the following:

data SignalTrans a = Ready (SignalNode a)
| Sampling (SignalNode a)
| Sampled a (SignalNode a)
| Aged a (SignalNode a)

The SignalNode type is a disjoint union where each alternative corresponds to
a signal combinator, and it contains references to other signals of type S a,
thereby closing the loop. The primitives simply create the appropriate node in
Ready state and wrap it in the signal structure. Since the interface has to look
pure to support the applicative style demonstrated in the examples, the library
relies on unsafePerformIO to create the references on demand in the case of the
stateless combinators. Only stateful and transfer signals need to be created in
the SM monad, as all the others are stateless.

The SM monad is in fact just a wrapper around IO that does not provide
liftIO , therefore no effectful calculation can be executed in it other than creating
stateful signals.

newtype SM a = SM {createSignal :: IO a }
deriving (Monad ,Applicative,Functor ,MonadFix )

The only advanced language extension needed by the library is existential types,
without which it would not be possible to define the applicative combinators
and the transfer primitive, because they have to hide the types of the signals
they depend on. Also, the functions traversing the signal network need to have
existential types, because the nodes of the graph are heterogenous, even if they
are related in well-defined ways.



3.2 Execution Mechanism

Each superstep consists of three separate phases: sampling, aging, and finalisa-
tion.

Every node starts out in the Ready state. Whenever their value is requested,
they enter the Sampling state and cause all their dependencies to be sampled.
As soon as their output is computed, they are marked as Sampled , and the node
contains both the current sample and the old version of the signal.

If the sampling function encounters a signal in Sampling state, it assumes
that it found a dependency loop without a delay. In this case, the signal in
question is sampled with an alternative function, which delays transfer signals
by reusing their previous output, but it acts as normal on all the other kinds of
nodes. Therefore, loops composed of solely stateless primitives are not resolved
by the system. The delay primitive plays a significant role here, because the
evaluator knows that it does not need to sample its input signal in order to
get the current sample of its delayed version, hence it does not touch the input
before the aging phase. If delay was defined in terms of transfer , the evaluator
could not tell that it only depends on past inputs.

The delayed samples are eventually overwritten by the call that put them in
Sampling state originally, so no unnecessary delays are left in the system by the
time everything is computed.

Afterwards, signals can be aged transitively using their current structure
and the freshly produced sample where applicable. Only the stateful node types
(stateful , transfer , and delay) change during this step. There is only one thing
to keep in mind: the state of stateful and transfer is evaluated to weak head
normal form regardless of whether they are needed or not, in order to prevent
huge thunks from building up. At the end of this phase, all Sampled signals
become Aged . The samples are still retained at this point, because they might
be needed by dependency loops.

The final phase is a third traversal, where samples are discarded and the aged
signals are wrapped in Ready for use in the next superstep.

3.3 Applicative Optimisation

Using only the two basic applicative combinators can easily result in a large
number of nodes, since each function and each argument requires a separate
node. It is known that all expressions built up using pure and ~ have a canonical
form where the pure parts are factored out and united in a single monolithic
function; an informal description of this process is given in [10]. Elerea uses the
following equivalence to flatten function applications as much as possible:

(f #$ x1 ~ . . .~ xm) ~ (g #$ y1 ~ . . .~ yn)
≡

h #$ x1 ~ . . .~ xm ~ y1 ~ . . .~ yn

where h x1 . . . xm y1 . . . yn = f x1 . . . xm (g y1 . . . yn)



While this equation can be derived from the applicative laws, its intuitive
meaning should be easy to see: the right argument of ~ is the last argument of
the function on the very left (the left pair of parentheses is superfluous), so this
is the behaviour the united function has to emulate.

Since we need a separate case for each arity, the flattening process has to be
limited at some point. Besides, the number of rules is proportional to the square
of the maximum arity handled by the system, so Elerea can only completely
collapse function applications of up to five arguments.

4 Design Rationale

4.1 Parting with Events

The original idea was to create a library that can be programmed essentially like
Reactive, but some paper experimentation suggested that Reactive-style events
add a lot of complexity to the design. It is also typical to generate events from
boolean conditions over the current state of the system, and the only way to
achieve this in Reactive is to take some periodic event source – e.g. one that
is sync with the sampling process of the top-level behaviour – and drop events
when the condition does not hold. This is basically the same as Yampa-style event
handling, i.e. events degrade into Maybe-like behaviours. Therefore, events are
modelled with continuous boolean-valued signals. This reduces the generality of
the library, making it incapable of efficiently handling event-driven systems like
graphical user interfaces, but this is an acceptable trade-off in return for the
reduced complexity.

4.2 Going Impure

While it would be straightforward to have each primitive construct some pure
data structure, bringing this structure to life would be impossible without leaving
the pure world. The heart of the problem is that we cannot age the network
without knowing which nodes are physically identical, since the knots would
be untied and we would get into an infinite loop if there is at least one cycle.
However, we cannot detect sharing by looking at the values, unless the values
are guaranteed to be all distinct. Needless to say, given the desired interface,
there is no pure way to tag them with unique identifiers either.

As long as the network is static (it contains no higher-order constructs), there
is a half-solution to this problem in the Haskell world: we can check the pointers
of the nodes in a preparation phase and use them as unique identifiers to build an
indexed map of nodes. Naturally, nodes would also be changed to refer to their
dependencies through such indices. In other words, we would introduce a level
of indirection. The resulting representation of the network could be properly
updated in each superstep, even though it would be a cumbersome process: we
cannot just map an aging function over the collection but have to traverse the
graph in the same order as if it was the original pure structure – but at least we
can cut the cycles short by checking whether some result is already available.



In the general case, the network is dynamic, which complicates matters even
further. If new signals are synthesised along the way, they are also pure structures
that have to be processed and inserted into the live network in a similar fashion
as the already existing nodes. These structures can also contain references to the
pure versions of some live nodes, and we have to find the index of the appropriate
live node knowing only the reference to its original pure representation. Besides,
we have to implement our own garbage collection mechanism to get rid of signals
no-one can possibly reference any more.

All in all, maintaining an explicit structure requires a lot of book-keeping and
it duplicates functionality that the runtime implements much more efficiently.
This realisation led to the idea of representing each node directly with a mutable
variable and let the runtime keep track of them.

4.3 Introducing Dynamism

The original goal was to create a purely applicative style library, and there was
no monadic interface in the plans. To achieve this, the previous major version
of the library (0.x.x) had a construct called latcher , which was superseded by
generator and sampler in the current version. It combined control through a
boolean signal with collapsing higher-order samples, and had the following type:

latcher :: S a → S Bool → S (S a)→ S a

The signal constructed by latcher s0 b ss started out as signal s0, and altered
its behaviour by sampling the stream of behaviours ss whenever the boolean
control input b was true. Just like transfer , it was also undelayed, i.e. if the
control signal evaluated to true at the moment, the new behaviour replaced the
old one before producing a sample.

The basic idea behind this construct was that new stateful signals would
be created on demand, as dictated by lazy evaluation. However, this interface
broke referential transparency, since the behaviour of the network would depend
on when signal expressions were evaluated. Most importantly, the start times
would be different depending on the optimisation options used by the compiler,
because let-floating (moving an expression to the outermost scope possible given
its data dependencies) and common subexpression elimination (CSE) could eas-
ily interfere with the intent of the programmer.

The original solution to this problem was to inject dependencies in the code
by hand, because disabling optimisations altogether would have detrimental ef-
fects on performance. In practice, this meant passing around dummy parameters,
so the optimiser would keep every stateful signal in its original scope. Naturally,
this was an error prone workaround that went straight against the goal of prac-
ticality.

Introducing the SM monad solved the problem of scoping by basically re-
placing the explicit dummy parameters. At the same time, it does not really
interfere with the applicative style, since most signal combinators are stateless
– even sampler and generator , which perform subtasks of the original latcher –,



so they can be combined just as easily as pure values. Thanks to the MonadFix
instance, definitions can be moved around just as freely as usual in functional
programs. The biggest difference is that stateful signals need to be extracted
from the SM monad, i.e. one has to write ← instead of = when defining them.

5 Evaluation

Even though Elerea is at best in the embryonic stage, it can already be used to
create functional applications. This is mostly explained by the fact that getting
some reasonably complex examples to run had priority over laying down the-
oretical foundations, arguing that if something works well, we can try to find
out later why. Of course, this is only possible as long as the system is not too
complex for such analysis. Fortunately, it took only a few simple functions and
a straightforward data structure to get a useful system up and running, whose
complexity has not grown much either for the time being, so there is a good
chance that the specifics of its behaviour can be thoroughly analysed.

The system has some nice properties that make it a comfortable playground
for experimenting with reactivity. First of all, the initial experience suggests that
a primarily applicative interface can indeed be very convenient. Elerea does a
good job supporting recursion and dynamism, providing great freedom to the
user. Thanks to the use of mutable variables in the core, performance is pre-
dictable, and Elerea programs tend to play nice with resources. The overall
simplicity of the library also makes it easy to embed signals into different frame-
works, and it is even straightforward to create a feedback behind the scenes,
i.e. let the reactive program affect the future readings of its own external inputs.

On the other hand, it must be noted that the heavy use of IORefs most likely
severely limits performance. This problem is hard to solve without significant
changes to the interface, because mutable variables were needed to deal with the
structures allowed by general recursion. Also, the semantics of the constructs
are not properly defined.

6 Related Work

It is getting more and more difficult to give an exhaustive list of FRP implemen-
tations, but it is customary to note that the concept was introduced with Fran
[7], a language to define animations in a purely declarative way. The interface
of Fran is applicative, very clean and high-level, but it is difficult, if not impos-
sible to implement efficiently in Haskell. Still, it could be used as the reactive
basis in projects like Frob [16], a domain specific language for controlling robots,
and FVision [17], a reactive interface over a C++ library for visual tracking.
Real-time FRP [19] attacked the performance issues by concentrating on the op-
erational semantics, and factoring reactivity and pure calculations into different
language layers. The Hume language [12] was designed at about the same time
with a focus on giving static resource bounds while allowing the user to directly
describe the system as a data-flow network, and it is also based on a similar



separation of concerns. FunWorlds [18] does away with global time and adopts
the stream-of-residuals view, meaning that it explicitly breaks up behaviours at
each sampling point on the conceptual level in order to describe reactions locally.
React [1] disallows recursive definitions and provides a single looping construct
instead that adds an infinitesimal delay.

The system that is probably closest to Elerea in spirit is FrTime [4]. It is
a REPL-friendly system living in the DrScheme environment [9], whose signals
can be manipulated and probed in an interactive session. Signal expressions
are processed with a custom-made evaluator, and the system also incorporates
applicative optimisations, albeit under the name lowering [2].

As for the three systems mentioned at the beginning, Elerea resembles Yampa
[5] the most, because both are pull-based with only continuous signals and no
‘real’ events. Even though Reactive [6], carrying the legacy of Fran, looks more
similar on the surface, its signal concept is completely different: a signal expres-
sion in Reactive has no identity, as it is a self-contained description of the whole
history of a changing value. Consequently, interaction between signals has to be
organised in fundamentally different ways. Grapefruit [13] focuses on describ-
ing event-driven systems, although it provides continuous signals too. It solves
the problem of let-floating by having signals refer to their consumers through
uninstantiated type parameters, which makes it clear when signals have to start.

7 Conclusions and Future Work

Elerea is an experiment to see what we get when we try to implement a reactive
interface that feels intuitive. The essence of this intuition is laziness extended
in the temporal dimension, where signals come to life whenever their output is
needed by others. Intuitiveness is naturally highly subjective, but early experi-
ence with the library suggests that it can indeed give clear and concise descrip-
tions for dynamic networks of continuous signals.

Both the theoretical and the practical aspects of the system can be explored
even further. The project is mostly focused on the latter, and the short-term
plans are to create a complex application with a highly dynamic structure, which
is necessary to test composability on a large scale and also to observe typical
usage patterns that can drive the further design of the library. The library would
also benefit from precise semantics, which should also be worked out in the
future.

Acknowledgements

I owe thanks to Peter Verswyvelen and Péter Hanák for their helpful comments,
as well as the anonymous reviewers of the Haskell Symposium, who gave an
exhaustive analysis of an old version of this paper.



References

1. Daniel Bünzli. React (OCaml) 2009. http://erratique.ch/software/react

2. Kimberley Burchett, Gregory H. Cooper, and Shriram Krishnamurthi. Lowering: A
Static Optimization Technique for Transparent Functional Reactivity. In Proceed-
ings of the 2007 ACM SIGPLAN symposium on Partial Evaluation and Program
Manipulation (PEPM ’07), pages 71–80. ACM Press, 2007, Nice, France

3. Mun Hon Cheong. Functional Programming and 3D Games. Master’s Thesis,
2005, University of New South Wales, Sydney, Australia.

4. Gregory H. Cooper and Shriram Krishnamurthi. Embedding dynamic dataflow in
a call-by-value language. In European Symposium on Programming, 2006, pages
294–308

5. Antony Courtney, Henrik Nilsson, and John Peterson. The Yampa Arcade. In
Proceedings of the 2003 ACM SIGPLAN Haskell Workshop (Haskell’03), pages
7–18. ACM Press, 2003, Uppsala, Sweden.

6. Conal Elliott. Simply efficient functional reactivity. 2008.
http://conal.net/papers/simply-reactive/

7. Conal Elliott and Paul Hudak. Functional reactive animation. In International
Conference on Functional Programming, June 1997, pages 263–273.

8. Levent Erkök. Value Recursion in Monadic Computations PhD Dissertation,
Oregon Graduate Institute School of Science Engineering, OHSU, October 2002.

9. Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew Flatt, Shriram
Krishnamurthi, Paul Steckler, and Matthias Felleisen. DrScheme: A programming
environment for Scheme. In Journal of Functional Programming, 12(2), pages 159–
182, 2002.

10. Jeremy Gibbons and Bruno C. D. S. Oliveira. The essence of the Iterator pattern.
In Mathematically-structured functional programming, Conor McBride and Tarmo
Uustalu (eds), 2006.

11. George Giorgidze and Henrik Nilsson. Switched-on Yampa: Declarative Program-
ming of Modular Synthesizers. In Proceedings of 10th International Symposium on
Practical Aspects of Declarative Languages, San Francisco, CA, USA, January 7-8,
2008.

12. Kevin Hammond and Greg Michaelson. Hume: A Domain-Specific Language for
Real-Time Embedded Systems. In Generative Programming and Component En-
gineering, Second International Conference, Erfurt, Germany, September 22-25,
2003, pages 37-56. Lecture Notes in Computer Science, Springer, 2003.

13. Wolfgang Jeltsch. Improving Push-based FRP. 9th Symposium on Trends in Func-
tional Programming, May 26–28, 2008.

14. Conor Mcbride and Ross Paterson. Applicative programming with effects Journal
of Functional Programming, 18(1), pages 1–13, 2008.

15. Silvio Romero de Lemos Meira. On the Efficiency of Applicative Algorithms. PhD
thesis, Computing Laboratory, The University of Kent at Canterbury, March 1985.

16. John Peterson, Paul Hudak and Conal Elliott. Lambda in Motion: Controlling
Robots with Haskell. In First International Workshop on Practical Aspects of
Declarative Languages (PADL), January 1999

17. John Peterson, Paul Hudak, Alastair Reid and Greg Hager. FVision: A Declara-
tive Language for Visual Tracking. In Proceedings of PADL’01: 3rd International
Workshop on Practical Aspects of Declarative Languages, pages 304–321, January
2001



18. Claus Reinke. FunWorlds/HOpenGL – Functional Programming and Virtual
Worlds. draft paper presented at the 14th International Workshop on the Imple-
mentation of Functional Languages (IFL 2002), Madrid, Spain, September 16–18,
2002.

19. Zhanyong Wan, Walid Taha, and Paul Hudak. Real-time FRP. In Proceedings
of Sixth ACM SIGPLAN International Conference on Functional Programming,
Florence, Italy, September 2001. ACM.


